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We study nematic liquid crystal configurations in a prototype bistable device—the post aligned bistable
nematic �PABN� cell. Working within the Oseen-Frank continuum model, we describe the liquid crystal
configuration by a unit-vector field n, in a model version of the PABN cell. First, we identify four distinct
topologies in this geometry. We explicitly construct trial configurations with these topologies which are used as
initial conditions for a numerical solver, based on the finite-element method. The morphologies and energetics
of the corresponding numerical solutions qualitatively agree with experimental observations and suggest a
topological mechanism for bistability in the PABN cell geometry.
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I. INTRODUCTION

Liquid crystals are an intermediate phase of matter be-
tween the solid and liquid states. In the simplest liquid crys-
tal phase, the nematic phase, the constituent rodlike mol-
ecules tend to align along a locally preferred direction. This
mean direction of molecular alignment is described by a di-
rector field n�r�, which is an unoriented unit-vector field so
that the sign of n has no physical significance �1�.

The existence of a locally preferred direction and the re-
sulting anisotropic optical properties make liquid crystals
very suitable for display devices. Most of the liquid crystal
displays �LCDs� in use today, such as the twisted nematic
and the super twisted nematic, are monostable �2�. They can
support two optically contrasting states, only one of which is
stable without an applied field. Recently, there has been con-
siderable interest in developing bistable display technologies,
where there are two or more stable, optically contrasting
states �3,4�. Here, power is needed only to switch between
the different states but not to maintain them.

Bistable nematic LCDs typically use a combination of
complex surface morphologies and surface treatments to sta-
bilize the different states �3–5�. This paper focuses on one
such bistable device—the post aligned bistable nematic
�PABN� device �4�. The PABN device consists of a liquid
crystal layer sandwiched between two substrates. The lower
substrate is featured by an array of microscopic posts, as
shown in Fig. 1. The boundary conditions are a mixture of
tangent and normal conditions in various parts of the geom-
etry �referred to as homogeneous and homeotropic, respec-
tively, in liquid crystal literature �1��. Tangent boundary con-
ditions on a surface constrain the director n to be in the plane
of the surface whereas normal boundary conditions constrain
n to be perpendicular to the surface.

For a range of post heights, the PABN device is experi-
mentally observed to be bistable �4�. It supports two opti-

cally contrasting states with long-term stability—one bright
and the other dark when viewed between crossed polarizers.
Optical modeling suggests that the dark state corresponds to
a liquid crystal configuration that tilts strongly around the
microscopic posts whereas the bright state corresponds to a
suppressed tilt profile around the posts, i.e., a comparatively
planar configuration �4�. The high-tilt configuration is re-
ferred to as the tilted state and the low-tilt configuration as
the planar state in the remainder of the paper.

We use topological arguments to study static director con-
figurations in the PABN geometry. The admissible configu-
rations in this geometry can be partitioned into distinct topo-
logical classes �for details see �6,7�� and one might expect a
stable configuration �or local energy minimizer� for every
such class. The key point is that topologically distinct stable
configurations cannot be continuously deformed into each
other and switching proceeds via creation or annihilation of
topological defects and boundary condition violation �5,8�.
Therefore, such topologically distinct stable configurations,
if they exist and have similar free energies, lead to bistability
in prototype devices.

Our study is related to basic questions about the existence
and properties of multiple equilibrium configurations in com-
plex geometries. For polyhedral geometries �such as a rect-
angular prism�, we have addressed several general questions
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about the topological classification, energy estimates, and
regularity of equilibrium configurations in previous work
�9,10�. In this paper, we apply similar methods to a complex
nonconvex polyhedral geometry—the PABN geometry.

The paper is organized as follows. In Sec. II, we describe
our simplified model of the PABN device, based on the
Oseen-Frank continuum model. In Sec. III, we identify four
distinct �but simple� topologies in this model geometry. We
construct trial configurations with these topologies in Sec.
IV. These trial configurations are used as initial conditions
for a numerical solver of the equilibrium Euler-Lagrange
equations �4�. We obtain numerical solutions for each topo-
logical class. The energies and morphologies of these solu-
tions are then correlated to the observed physical phenom-
ena. The numerical results and experimental observations are
in qualitative agreement.

II. MODEL

We work with a simplified model version of the PABN
geometry, neglecting factors such as post tilt and replacing
the rounded edges and corners in Fig. 1 by sharp features.
Further, we only consider configurations which are periodic
in the array so that it suffices to look at what happens around
a single post. �This is a realistic assumption since a typical
pixel in the PABN device consists of thousands of these
posts.�

Our model geometry is displayed in Figs. 2 and 3 —a
single rectangular post of fixed square cross section �Lp

�Lp� and variable height, h, inside a cell of fixed dimen-
sions, Lc�Lc�H. The post and cell cross-sectional param-
eters, Lp and Lc, respectively, are chosen so that Lc=2Lp,
whereas the cell height H is fixed to be H=3Lc. These
choices roughly agree with the actual device parameters.

We model the liquid crystal configuration, outside the
rectangular post, by a unit-vector field n�r�. We impose pe-
riodic conditions on the cell boundaries so that

n�x,y,z� = n�x + Lc,y,z� = n�x,y + Lc,z�, etc. �1�

The constraint �1� allows us to extend our results to a peri-
odic array of posts. Further, n is taken to satisfy tangent
boundary conditions on the bottom substrate and post sur-
faces and normal conditions on the top substrate, consistent
with the boundary conditions in the device.

Working within the Oseen-Frank continuum model, the
liquid crystal energy is given by

E�n� = �
V

w�n,�n�dV , �2�

where

w�n,�n� = K1�� · n�2 + K2�n · � � n�2 + K3�n � � � n�2

+ �K2 + K4��tr��n�2 − �� · n�2� �3�

and the Kj are material-dependent elastic constants �1�. The
stable configurations then correspond to local minimizers of
�2�, subject to the imposed boundary conditions.

III. TOPOLOGY

Our aim in this paper is to identify and analyze topologi-
cally distinct stable configurations in the PABN cell �i.e.,
configurations that cannot be continuously deformed into
each other�. In this section, we first study the two-
dimensional zenithally bistable nematic �ZBN� cell as an il-
lustrative example �11,12�. The ZBN cell has a compara-
tively simple two-dimensional geometry where the topology
is characterized by a single quantity—the planar winding
number �13�. Here, we look at the experimentally observed

−0.25

−0.25

0.75

0.75

0

0.5

0
0.5

x/Lc

y/Lc

Lp

Lp

FIG. 2. The post cross-section, Lp�Lp, and the cell cross-
section, Lc�Lc, where Lc=2Lp.

FIG. 3. The model geometry with Lc=1, Lp=0.5, and H=3.
When translated to physical units, these correspond to Lc=1 �m,
Lp=500 nm, and H=3 �m, respectively.
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states and identify their distinct topologies. Then, we study
the three-dimensional PABN cell, where the geometry is far
more complex and the topology richer. We identify four dif-
ferent topological classes in this geometry. These classes
generate tilted and comparatively planar profiles around the
rectangular post and, hence, serve as good candidates for the
topologies of the experimentally observed tilted and planar
states.

A. ZBN cell

The ZBN cell, like most liquid crystal cells, consists of a
liquid crystal layer sandwiched between two substrates. The
bottom substrate is planar whereas the upper substrate is a
monograting. Both substrates are treated to be homeotropic
so that n is constrained to be normal to these surfaces.

The ZBN cell supports two stable, optically contrasting
configurations—the high-tilt almost vertical state which is
dark when viewed under crossed polarizers and the low-tilt
state, supporting greater bulk distortion, that is bright under
crossed polarizers �11,12� �tilt is measured with respect to
the horizontal direction�. The cell cross section �with a
wedge-shaped upper substrate� and the director profiles for
the two observed states are shown in Figs. 4�a� and 4�b�.

The topology of these states is characterized by the rota-
tion of n along a path connecting the two sides of the grating,
as shown in Fig. 4. This rotation can be quantified in terms of
the winding number—a topological invariant such that two
unit-vector fields n1 and n2 in the ZBN geometry are topo-
logically equivalent if and only if they have the same wind-
ing number. It clearly follows from Fig. 4that the high-tilt
state has the minimum allowed rotation consistent with the
boundary conditions whereas the low-tilt state exhibits
greater intermediate rotation. In fact, the net rotations for the
two states differ by � or a half-winding number �13�. This
then implies that the two states have different winding num-
bers and are thus topologically distinct, leading to their long-
term stabilities.

It should be noted that n can, in principle, rotate by arbi-
trarily large amounts around the relief grating �between the
fixed orientations at the sides� but such states have much
higher energies and are unlikely to be observed in practice.

B. PABN cell

Next, we consider the three-dimensional model PABN
cell, in Fig. 3. Here, the topology cannot be merely charac-
terized by the planar winding number, as in the ZBN case. In
fact, there are at least three separate topological invariants on

the post edges, post faces, and around the post vertices. In
this section, we do not give a detailed description of the
topological classification but identify four distinct, low-
energy topologies. A systematic account is given in �6,7�.

We first recall that the tangent boundary conditions on the
bottom substrate and the post surfaces imply that on these
surfaces, n takes values tangent to these surfaces. Therefore,
on the post edges, n is parallel to the edges and can take one
of two possible values. The value of n, on a post edge, is
defined to be the corresponding edge orientation �6�. n is
necessarily discontinuous at the vertices, where three or
more edges meet. For simplicity, we only consider configu-
rations which are continuous everywhere away from the
sharp post vertices.

We first look at the top face of the post and the corre-
sponding four horizontal edges. Up to symmetry and the sign
of n, there are three distinct choices of the horizontal edge
orientations on this face, as shown in Fig. 5. The last case
necessarily creates a planar defect on this face and is, there-
fore, excluded �the constraint of interior continuity disallows
certain choices of the edge orientations, for details see �6��.
Of the remaining two cases, we choose the first one since it
is more symmetric and is, therefore, expected to have lower
energy. Once the horizontal orientations on the top face are
fixed as in Fig. 5�a�, the horizontal orientations on the corre-

FIG. 4. �a� The high-tilt state. �b� The low-tilt state.

(c)(b)(a)

FIG. 5. �a� The most symmetric choice. �b�
Admissible choice of lower symmetry. �c� Neces-
sarily contains a planar defect.
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sponding bottom edges are taken to coincide with those on
the top. This then completely determines the edge orienta-
tions on the eight horizontal post edges in our model, which
are kept fixed for simplicity. �See Fig. 6.�

We then consider the edge orientations on the four vertical
post edges. We recall that tangent boundary conditions imply
that n is either oriented upwards or downwards on these
edges. Labelling the four edges by i= �1,2 ,3 ,4� as in Fig. 7
and the corresponding edge orientation by ei, there are four
distinct cases up to symmetry and the sign of n. These cases
are enumerated in Table I. The first case, T, corresponds to n
being oriented upwards on all four edges. For the second
case, P1, n is oriented upwards on three vertical edges and
downwards on the remaining fourth edge whereas for the
cases P2 and P3, n is oriented upwards on two edges and
downwards on the remaining two. P2 and P3 are distin-
guished by the fact that ei changes sign on a pair of opposite
faces in P2 whereas ei changes sign on all four vertical faces
in P3.

In addition to the edge orientations, the topology of n is
also determined by its behavior on the post faces and around
the post vertices. We take an arbitrary path connecting a pair
of adjacent post edges, on a post face. The tangent boundary
conditions imply that as we move along this path, n rotates
in the plane of the corresponding face. We only consider
topologies whereby n undergoes minimal rotation between
pairs of adjacent post edges �which is ± �

2 or a quarter turn�.
In the terminology of �6�, we say that these topologies have
zero kink numbers.

The fixed horizontal edge orientations and the constraint
of zero kink numbers allows us to qualitatively predict the
behavior of n on the bottom substrate and the top of the post,
as shown in Figs. 6�a� and 6�b�. On the bottom substrate, our
choice of the horizontal orientations implies that n splits at
one of the vertices �the bottom left-hand vertex�, follows the
post edges and then rejoins at the top right-hand vertex,
aligning along the square cross-sectional diagonal. The net
rotation between any two adjacent edges is just ± �

2 , as is
evident from Fig. 6�a�. Similarly, on the top of the post �refer
to Fig. 6�b��, we have a fractional source defect at one of the
vertices �the bottom left-hand vertex�, accompanied by a sink
defect at the diagonally opposite �top right-hand� vertex and
any continuous n aligns along the corresponding diagonal.

The sharp post vertices can be treated as fractional point
defects in our model; the corresponding strength is measured
in terms of the neighboring distortion around the vertex. We
only consider topologies where n has minimal distortion
around post vertices or equivalently, these vertices are frac-
tional defects of minimal degree �the solid angle subtended

TABLE I. The four sets of vertical orientations.

e1 e2 e3 e4

T ẑ ẑ ẑ ẑ

P1 ẑ ẑ −ẑ ẑ

P2 ẑ −ẑ −ẑ ẑ

P3 ẑ −ẑ ẑ −ẑ
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FIG. 6. �Color online� �a� The profile on the bottom substrate. �b� The profile on the top face of the post.

FIG. 7. The four vertical edges.
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by n as it varies around a post vertex is just ± �
2 �. In the

terminology of �6�, these topologies have minimal trapped
areas.

This then defines four distinct topologies, �T , P1 , P2 , P3�,
all of which have fixed horizontal orientations as in Fig. 5�a�,
zero kink numbers and minimal trapped areas but are distin-
guished by their vertical orientations given in Table I. The
topologies are labelled by their vertical orientations for sim-
plicity, since the vertical orientations are the only topological
parameters in our model.

IV. NUMERICAL MODELLING

We now investigate the existence of equilibrium stable
configurations with the four topologies cited in Sec. III. To
this end, we use the finite-element method to numerically
solve the Euler-Lagrange equations associated with the
Oseen-Frank energy �2� �14�,

�

�ni
w�n,�n� =

�

�rj
� �

�ni,j
w�n,�n�	 , �4�

where w�n ,�n�, the energy density, has been defined in �3�,
ni is the ith component of the unit-vector field, and ni,j is the
jth partial derivative of ni. The numerical modeling is carried
out in Femlab—a commercial partial differential equation
solver based on the finite-element method �15�.

We first construct trial configurations for each of the four
topologies. Here, it is simpler to specify an unnormalized
vector field N= �Nx ,Ny ,Nz�. The unit-vector field n is then
given by

n =
N


N

. �5�

The fixed horizontal orientations allow us to have a single
prescription for Nx and Ny in the four cases,
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FIG. 8. �Color online� �a� The T profile. �b� The P1 profile. �c� The P2 profile. �d� The P3 profile. The scaled vertical coordinate in each
plot is z /h, where h is the post height and 0�z /h�1.
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FIG. 9. �Color online� The T profile on the faces, up to the height of the post 0�z�h, where z is in �m. The vertical coordinate is the
dimensionless quantity—z /h where 0�z /h�1.
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FIG. 10. �Color online� The P1 profile on the post faces.
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FIG. 11. �Color online� The P2 profile on the post faces.
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FIG. 12. �Color online� The P3 profile on the post faces.
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Nx = �sin��x

Lp
	�2�H − z

H
	 ,

Ny = �sin��y

Lp
	�2�H − z

H
	 , �6�

where Lp is the post cross-sectional parameter and H is the
cell height.

For 0�z�h, up to the height of the post, Nz clearly has
different forms to account for the different sets of vertical
orientations,

Nz =

z�h − z� , T ,

�z�h − z���1 + cos��x

Lp
	 + cos��y

Lp
	� , P1,

�z�h − z��cos��x

Lp
	 , P2,

�z�h − z��cos��x

Lp
	cos��y

Lp
	 , P3.

�
�7�

For h�z�H �from the top of the post to the top substrate�,
Nz is given by

Nz =
z − h

H − h
�8�

for all topologies. �Note that for Lc=2Lp and −1
4 �

x
Lc

, y
Lc

�
3
4 ,0�z�H, the only points where N vanishes are given

by the post vertices, which are necessarily singularities be-
cause of the tangent boundary conditions.�

Given Eqs. �6�–�8�, one can easily check that the repre-
sentative �5� satisfies the boundary conditions with the cor-
rect topology and is continuous away from the post vertices.
We use these trial configurations as initial conditions for the
numerical solver. We numerically solve the Euler-Lagrange
equations on a variable mesh that allows for greater resolu-
tion near the sharp post features. The numerical solver re-
spects the boundary conditions and topology so that the nu-
merical solutions have the same topology as the initial
condition.

We show the solution profiles with h=Lc in Figs. 8–12
and 14–17. We plot the profile around the rectangular post
for �T , P1 , P2 , P3� in Figs. 8�a�–8�d�. It is evident that the
profiles are continuous and regular around the post with no
point or line singularities. In particular, there are no defects
along the leading and trailing edges, as suggested by previ-

FIG. 13. �Color online� A periodically extended domain contain-
ing two posts. This is the bottom cross section, with the filled re-
gions corresponding to the post bases. The bold line indicates the
cross section y=Lc /4, which is plotted in Figs. 14–17.
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FIG. 14. �Color online� This plot is the projection of the T
profile onto the plane y=Lc /4, i.e., only the x and z components are
shown here. The dots, in particular, correspond to points where the
solution is oriented in the y direction. The horizontal coordinate is
the dimensionless quantity x /Lc and the vertical coordinate is z /h.
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FIG. 15. �Color online� The projection of the P1 profile onto the
plane y=Lc /4.
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FIG. 16. �Color online� The projection of the P2 profile onto y
=Lc /4.

MAJUMDAR et al. PHYSICAL REVIEW E 75, 051703 �2007�

051703-8



ous modeling �4�. In Figs. 9–12 we describe the four profiles
on the post faces in greater detail. Figure 9 clearly shows that
the T profile tilts upwards at all points as we move across the
post faces and aligns along the post diagonal. Figures 10–12
correspond to the P1, P2, and P3 profiles, respectively. Here,
we note that whenever the vertical orientation changes sign
between a pair of successive vertical edges on a post face,
there is necessarily an intermediate planar region. This pla-
nar region is typically a curve across the face, between the
two edges in question. We can clearly see these planar re-
gions on a pair of adjacent faces in the P1 profile, on a pair of
opposite faces in the P2 profile and on all four vertical faces
in the P3 profile.

In Figs. 14–17, we plot the solutions on a periodically
extended domain, comprising of a pair of posts, along the
cross section y=Lc /4 as shown in Fig. 13. The periodic

boundary conditions imply that the profiles are simply re-
peated between neighboring posts. In particular, the solution
topology is the same for every post. This is illustrated in Fig.
14, where the T profile tilts upwards between a pair of neigh-
boring posts, while interpolating between the fixed orienta-
tions on the successive vertical edges. Similarly, the planar
regions observed in Figs. 10–12 extend between neighboring
posts in Figs. 15–17, by virtue of the periodic boundary con-
ditions. This is most pronounced for the P3 profile, as might
be expected on topological grounds. Above the post, for h
�z�H, all profiles tilt upwards and finally become homeo-
tropic on the top substrate. These profiles, though discussed
for a fixed post height h=Lc, are characteristic of the solution
profiles for all h.

Next we look at how the solution energy varies with
scaled post height, h /Lc, for two different sets of elastic con-
stants in Figs. 18 and 19. The second set, with equal elastic
constants, corresponds to the widely used one-constant ap-
proximation �1,14�. It is evident from Figs. 18 and 19 that
the qualitative trends for the two sets of elastic constants are
the same. However, the one-constant approximation in Fig.
19 is found to be computationally less demanding than the
unequal constant case and allows for greater numerical reso-
lution.

We first note that the T solutions have the smallest energy
whereas the P3 solutions have the highest �there is a slight
crossover between the P2 and P3 solutions in Fig. 18 but the
free energy difference is negligible�. This is consistent with
experimental observations which show that the liquid crystal
always relaxes into the high-tilt state, when cooled down
from the isotropic state �4�.

These energy trends can be anticipated and explained on
topological grounds. As is evident from Figs. 9 and 14, the T
solution has minimal distortion consistent with the boundary
conditions. The P3 solution, on the other hand, has the most
strongly distorted profile because of the planar regions on
every vertical post face and between every pair of neighbor-
ing posts. These planar regions arise from the continuous
interpolation between opposite vertical orientations; these
vertical orientations, in turn, are part of the topological char-
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FIG. 17. �Color online� The projection of the P3 profile onto y
=Lc /4. Note that we only plot up to height z=3h /2 because the
profiles have similar structures in the remainder of the cell.
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FIG. 18. �Color online� The
solution energies E in the Oseen-
Frank case with K1=4, K2=2, and
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height h /Lc.
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acterization of these solution profiles. The minimal and
maximal distortion, in the T and P3 solutions, respectively,
then qualitatively explain the energy trends.

We look at the free energy differences in Fig. 20. Here,
we plot two quantities:

�1 =
EP1

− ET

ET
�9�

and

�3 =
EP3

− ET

ET
�10�

for the elastic constants in Fig. 18. EP1
is typically the small-

est of �EP1
,EP2

,EP3
� and EP3

is the largest. It is evident from
Fig. 20 that both �1 and �3 are small and slowly increasing
for scaled post heights h /Lc in the interval h /Lc� �0.5,0.9�.

We refer to this interval, h� �0.5�Lc ,0.9�Lc�, as the shal-
low region in the remaining discussion. For post heights h
�Lc, the gradient of both curves increases appreciably so
that both �1 and �3 grow sharply with post height. This
change in behavior as a function of post height can be ex-
plained by Fig. 18. ET, the energy of the tilted solution, typi-
cally reaches a shallow maximum and then decreases very
slowly as the post height increases. On the other hand, both
EP1

and EP3
grow linearly with post height. These differences

in the energy trends manifest in �1 and �3, given by �9� and
�10�, leading to the features cited above.

To understand what these numerical calculations mean in
the context of the actual device, we first note that the tilted
and planar states are observed experimentally for post
heights in the range 0.6 microns to 1.2 microns. This
bistable region corresponds to h� �0.6�Lc ,1.2�Lc� in our
model. Further, as the posts become taller, the lower energy

0.5 1 1.5 2
20

30

40

50

60

E
T

E
P

1

E
P

2

E
P

3

E

h / L
c

K
1

= K
2

= K
3

= 2
K

4
= 0

FIG. 19. �Color online� The
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tilted state is more easily observed than the planar state and it
becomes difficult to switch from the tilted state to the planar
state �4�. Our modeling shows a shallow region �a region of
slow growth� for h

Lc
� �0.5,0.9�, where both �1 and �3 are

small and do not change significantly. This shallow region
suggests that the topologically distinct T and Pi states, i
=1,2 ,3, have similar free energies for h

Lc
� �0.5,0.9� and

might be experimentally observed over this range. Our nu-
merical range and the experimentally found bistable region
are in qualitative agreement. Second, the fact that �1 and �3

grow quickly as a function of h
Lc

indicates that the Pi states
become energetically far more expensive than the T states as
the post height increases. This, in turn, qualitatively explains
the experimental observations and switching characteristics
for taller posts. A more detailed analysis of the liquid crystal
energy would include surface effects and scalar order param-
eters �1,14�.

V. CONCLUSION

The methods and results presented in this paper illustrate
how topology can be exploited in order to find different static
liquid crystal configurations in prototype device geometries.
For the specific case of the PABN geometry, we have iden-
tified four simple, low-energy topologies. This topological
information is then used to construct suitable initial condi-
tions for a finite-element numerical algorithm, yielding four

distinct classes of numerical solutions. It would be difficult
to numerically find these different solutions without the to-
pological insight. Our modeling suggests that the tilted and
planar states in the PABN geometry are topologically dis-
tinct, leading to a topological mechanism for the observed
bistability. �For example, the T topology defined in Sec. III is
a good candidate for the topology of the tilted state whereas
the Pi topologies serve as good candidates for the planar
state.� Second, these numerical solutions have comparable
free energies over a certain range of post heights, indicating
a limited bistability region that is again commensurate with
experimental observations.

The methods outlined in this paper can be extended to
more general polyhedral geometries. We can use topology to
organize the space of admissible configurations, understand
the structure of the stable configurations and their energetics.
This will be investigated further in subsequent work.
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